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Abstract. This paper introduces a novel technique
for predicting the stability of quadruped robot locomo-
tion using a central pattern generator (CPG). The
proposed method utilizes classification methods and
principal component analysis (PCA) to predict sta-
bility. The objective of this study is to anticipate
the stability or instability of robot movement by mod-
ifying controlling parameters, referred to as features.
The simulations of robot locomotion are conducted in
MATLAB/SIMULINK R©, generating a dataset of 82
observations with different parameters. Machine learn-
ing (ML) techniques are then applied, using classi-
fication methods and PCA, to determine the stabil-
ity condition. Six classification methods, including
K-nearest neighbors (KNN), support vector classifier
(SVC), Gaussian Naïve Bayes (GaussianNB), logistic
regression (LR), decision tree (DT), and random for-
est (RF) are implemented using Scikit-learn, an open-
source ML library in Python. The performance of these
classifiers is evaluated using four metrics: precision,
recall, accuracy, and F1-score. The results indicate
that KNN and SVC exhibit higher metric values com-
pared to the other classifiers, making them more effec-
tive for stability prediction.

Keywords

Quadruped robot, stability, prediction, classifi-
cation methods, principal component analysis
(PCA).

1. Introduction.

Legged robot has made much attention of researchers
worldwide because of exploring in the complex areas,
space, rescue operation, accomplishing a task with-

out human intervention, industrial use, etc. Among
all legged robot, quadruped robots are superior due
to the benefits of load capacity and balanced struc-
ture, exploring in all terrains and locomotive stability
[1, 2]. In order to achieve real-time speed and stable
patterns of natural quadrupedal movement like a cat,
dog, horse, the developed control system, and dynam-
ical gait generation are required [3].

Central pattern generator (CPG), a model-free con-
trol method, has become a noteworthy technique in
dynamic locomotion control of multi-legged robots. It
is a bionic technique in quadruped robot control. Op-
erating as a biological nervous system, it can be con-
structed with a group of coupled neurons that generate
rhythmic locomotion by coordinating the connection
of oscillators. CPG can also modify gait transition by
simple control signals. It adjusts output by high level
nerve signals and external feedback. [4]. CPG output
signals were first achieved by Matsuoka utilizing oscil-
lator model adjustment [5]. This oscillator can only
generate a positive signal, which is often inappropri-
ate for engineering control purposes. On the basis of
Matsuoka’s CPG oscillator, Kimura et al. utilized ex-
citatory and inhibitory model neurons to simulate the
impulses of nervous system of animals and to control
the gait of a quadruped robot called Tekken [6]. More-
over, the functions of the oscillators successfully were
improved by proposing further reflexes to the controller
and applied great walking tests of Tekken on irregular
terrains.

The Wilson-Cowan neural oscillator is also a well-
known CPG model to control legged robots. It de-
scribes the dynamics of interactions between popula-
tion of simple excitatory and inhibitory model neu-
rons. The Wilson-Cowan neural oscillator controller
was presented by Li et al. to control the quadruped
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robot locomotion [7]. The rhythmic movement of one
leg from the others in a quadruped robot is controlled
with four Wilson-Cowan neural oscillators. It is easy
to control the amplitude and period of the CPG model
for generating diverse gaits, but the stability control
and the real time of the oscillation system regulation
require more modification.

In different methods of stability control, Liu and Chen
suggested zero moment point (ZMP) model to con-
trol the locomotive stability of quadruped robot, which
achieves some improvements but low flexibility and ef-
ficiency of planning and switching the gait [8]. Jun-
min Li et al. proposed the improved Wilson-Cowan
nervous oscillator model and presented new controller
algorithm based on central pattern generator-zero mo-
ment point (CPG-ZMP) to control the locomotion of
a quadruped robot. The stability of robot’s locomo-
tion was improved significantly but it needs a greater
improvement [9].

On the basis of intelligent control, the control methods
have received considerable attentions from the major-
ity of researchers in recent years. Some artificial intelli-
gent algorithms are also utilized in the locomotion con-
trol methods, such as genetic algorithms, fuzzy control,
deep learning and neural networks. Besides, there are
some advantages to using classic and intelligent con-
trol together in different researches. First, Naghmeh
Mirrashid et al. [10] presented a new super-twisting
algorithm (STA) controller based on teaching-learning-
based optimization (TLBO) for an upper limb reha-
bilitation robot. The suggested controller guaranteed
finite-time convergence, reduced chattering, stability
and accurate performance. Second, Hadi Hasanpour
et al. [11] studied the adaptive back-stepping-based
control of a two-joint arm robot and dynamic model
of the robot using the Euler -Lagrange method. The
results of tracking error were brought to zero and the
stability of the model was guaranteed.

In [12], Ololade O. Obadina et al. presented the
improved grey-box model and fuzzy logic to control
real time of trajectory tracking and position of a
four degree-of-freedom leader-follower robot (LFR).
This approach successfully achieved a high-performing
model of the LFRmanipulator system and a better per-
formance of trajectory tracking. Moreover, in [2], Qin-
glei Ji et al. applied a deep reinforcement technique in
order to accomplish the efficient gait of a four-legged
robot for different walking however some aspects re-
quire to be improved in case of traing process and addi-
tional sensors. Also, M. Naya-Varela et al. [13] utilized
morphological development in neural network in order
to control the locomotion of quadruped robot. An arti-
ficial neural network (ANN) was utilized to execute ex-
perimental researches to recognize the weaknesses and
strengths of an ANN in navigation systems for legged
robots in [14]. Four experiments showed that changing

different parameters including accelerating the train-
ing process and optimization can increase the value
of ANN. A new gait planning technique was proposed
for a 2n-legged robot with passive-spines movement in
[15]. The finite state machine (FSM) theory is intro-
duced into the undulatory gait planning method. The
accuracy of the gait planning method was proved and
the results identified that the lateral locomotion of the
legs can improve the weaknesses of gaits. Danilo S.
Jodas [16] presented the developed control system for
the navigation of an independent mobile robot. Track
images were utilized to control the navigation using
pre-processing them and then extracted features were
submitted to a support vector machine (SVM) and an
ANN to find the most appropriate track. The results
determined that SVM had better performance and less
execution time in the training step. In addition, in [17],
Tong Li and et al. presented robot grasping system and
grasp stability prediction based on flexible tactile sen-
sor array using KNN, SVC, LR and ensemble learning
methods. The model achieved accuracy 98% in grasp
stability prediction.

In [18], Jiawei Chen et al. designed an adaptive om-
nidirectional walk for the quadruped robot applying
the extended ZMP on the center of inertia to obtain
the stable criterion in the rough terrain. Results illus-
trate that the relevant robot using the adaptive omni-
directional walk can walk on the rough terrain. Yan-
bin Zhang et al. [19] prepared a neural control frame-
work based on the CPG-RBF-hyper network. By mod-
ulating the frequency of the CPG, basic motor pat-
terns for different speeds can be generated. The ra-
dial basis function (RBF) network is a premotor net-
work that alters the shape of the CPG patterns. The
motor patterns under several walking speeds are first
learned utilizing probability-based black-box optimiza-
tion (PIBB) by an incremental learning method. By
combining PIBB and supervised learning, the CPG-
RBF-hyper network can enable a quadruped robot to
perform stable and robust walking at different speeds.
Takahiro Fukui et al. [20] illustrated the effective-
ness of vestibular feedback to CPG employed for the
movement of quadruped robots. Vestibular feedback
causes autonomous gait transitions at different speeds
between different types of gates.

The locomotion control of a quadruped robot requires
powerful system. Machine learning techniques are the
great key to anticipate whether a corresponding loco-
motion is stable or not.

All studies done by researchers for improvement and
stability of robot locomotion in the past, were actu-
ally based on robot behavior. While, prediction of
robot stability using adjusted control parameters, is
highly valuable. The state-of-the-art of this article is
prediction-based classification of quadruped robot sta-
bility by adjusting control parameters. In fact, main
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Fig. 1: Configurations of the Wilson-Cowan neural oscillators.
[9], • Inhibitory connection and o excitatory connection.

contribution of this study is to guarantee the stabil-
ity during locomotion before switching the gait such
as walk, trot, pace and gallop. In addition, the new
approach makes the robot capable of predicting sta-
bility when parameters are adjusted in real time. To
achieve this, the stable and unstable locomotion of a
quadruped robot is studied during trotting. In this
study, 82 tests using different parameters are executed
on quadruped robot that 30% of them are test data.
In addition, six classifiers: K-nearest neighbors (KNN),
support vector classifier (SVC), Gaussian Naïve Bayes
(GaussianNB), logistic regression (LR), decision tree
(DT), random forest (RF) and a dimensional reduction
model based on PCA are employed to help in predic-
tion of stability or instability.

This paper is organized as follows: Section 2. refers
to the improved Wilson-Cowan nervous oscillator. Sec-
tion 3. explains the proposed techniques in details.
Section 4. introduces our data preprocessing. Sec-
tion 5. applies pipeline method, Section 6. briefly
discusses precision, recall, accuracy and f1-score plots.
Section 7. discusses simulation and classification re-
sults. Finally, conclusion is addressed in Section 8.
.

2. Transition of Quadruped
Robot

This paper represents two typical gaits, including walk
and trot that were generated by improved Wilson-
Cowan nervous oscillator [9].

2.1. Improved Oscillators
model

Fig. 1 shows the Wilson and Cowan’s oscillator model
consisting of excitatory neuron u and inhibitory neuron
v with synaptic connections. Where d is the inhibitory
connection gain of neuron and a is the excitatory con-
nection gain of neuron, c is the excitatory connection
gain of u to v and b is the inhibitory connection gain of
v to u. The improved Wilson-Cowan nervous oscillator

Fig. 2: The CPG control topology structure of quadruped robot
(a) Walk network connection topology structure. (b)
Trot network connection topology structure [9].

model was calculated as follows:

Tui

dui
dt

+ ui = fµ (aui − bvi

+

n∑
j=1

wijuj +

m∑
k=1

gksik + Sui

 , (1)

Tvi
dui
dt

+ vi = fµ (cui − dvi

+

n∑
j=1

wijvj +

m∑
k=1

gksik + Svi

 , (2)

Where fµ(x) = tanh(µx), i, j = 1, 2, 3, 4, k =
1, 2, 3, . . . ,m.

Also, i and j are the numbers of central neural oscilla-
tors,W ∈ R4×4 is a matrix constructed of wij and wij
is the connection weight between oscillators. External
feedback of CPG control model was proposed, where
gk is coefficient of sik, sik is the reflection informa-
tion and u and v are the adverse vectors of reflection
coefficients. The parameters Sui

and Svi are the ex-
ternal signals that are usually DC inputs, Tui

is the
rise-time constant of step input, Tvi is the fatigue time
constant, fµ(x) is the coupling function, and µ is the
gain of fµ(x). The output of the corresponding CPG
model was normalized as follows:

yiout = p(ui − vi), (3)

in order to adjust the outputs of u and v, p was pro-
posed as amplitude limiting coefficient; yout controls
the locomotion of corresponding leg as an output of
linear synthesis.

2.2. Gait planning
Walk and trot are discussed and their gait switch is
shown in this study. Walk is putting up and down
each leg in turn and the phase of each leg movement
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Tab. 1: Parameters of the CPG differential equations [9].

Parameters Value
Tui , Tvi 0.2

a 5.6
d -2.4
b 5.6
c 2.4

Sui , Svi 0.02
µ 1
p 0.5
m 1
gk 0.1

lasts a quarter cycle. Trot means that the legs move
diagonally and they put up and down at the same time.
The phase of two diagonal legs lasts half of cycle.

1) Weight matrixes of walk and trot

The CPG model with different weight matrixes can
generate rhythmic signals by different gaits including
walk and trot. The connection weight matrixes Wwalk

and Wtrot are as follows [9]:

Wwalk


+0.0 −0.1 −0.1 −0.1
−0.1 +0.0 −0.1 −0.1
−0.1 −0.1 +0.0 −0.1
−0.1 −0.1 −0.1 +0.0

 (4)

Wtrot


+0.0 −0.1 +0.1 −0.1
−0.1 +0.0 −0.1 +0.1
+0.1 −0.1 +0.0 −0.1
−0.1 +0.1 −0.1 +0.0

 (5)

The CPG control topology structure of quadruped
robot with connection weight matrixes Wwalk and
Wtrot is shown in Fig. 2. As shown in this Figure,
the movement of each leg will be controlled with other
legs by three bidirectional connections.

2) Gait transition

With diverse gait matrixes, the CPG model can gen-
erate various gaits. Gaits transition can be realized by
changing the connection weight matrix. The parame-
ters in (2) and (3) are shown in Table 1.

The two gaits of quadruped robot generated by corre-
sponding CPG are shown in Fig. 3. It is shown that
the circuit can change the rhythmic patterns promptly.
The x-axis is second and the unit of y-axis is radian.
Gait transition begins at t = 8s.

3. Classification methods
The data classification is a supervised learning tech-
nique to predict the correct category for a given in-
put using machine learning. A classifier organizes data
into categories that make it easy to retrieve, locate and

Fig. 3: Gait transition from walk to trot. (a) Left front leg. (b)
Right front leg. (c) Right hind leg. (d) Left hind leg.

store for future use. In other words, the model of clas-
sification is completely trained to the train data, and
then it is evaluated on test data and finally the re-
sults are measured using several metrics to know how
well the corresponding classifier performed on the input
data and whether it is appropriate for future prediction
on new datasets or not (Appendix).

3.1. Classifiers

As mentioned before in this study, five well-known
types of classifiers based on supervised learning tech-
niques are described as follows:

1) DT

DT is a decision support tool that utilizes tree-like
model of Boolean decisions. In this technique, each
path starts from the root and indicates a sequence of
data splitting until a Boolean result is reached at the
leaf node [21]. The purpose is to anticipate the value
of a target variable by learning decision derived from
the data features.

2) RF

RF constructs decision trees on randomly selected sam-
ples. It anticipates from each tree and takes the average
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of all the predictions. Important features in a database
are also selected by RF [22].

3) KNN

KNN classifier is one of the simplest learning algo-
rithms, working off the assumption that similar points
can be found near one another. KNN stores datasets
at the training phase and when it receives new data, it
classifies them into a class which is almost similar to
the new data [23].

4) SVC

SVC maps data points to a high-dimensional space and
then recognizes the optimal hyperplane that divides the
data into two classes. SVM is an integrated model in
order to import SVC. According to recent researches,
using SVM provides proper solution for control pur-
poses [24].

5) LR

LR is another well-understood technique. In this model
a linear combination of inputs is transformed to non-
linear outputs. In fact, it utilizes a sigmoid function to
model a binary output variable. LR is a robust method
for classification prediction [25, 26].

6) GaussianNB

Naive Bayes is considered as a popular probabilistic
classifier. It relies on the Bayes theorem. NB classifier
has stable efficiency [27]. A GaussianNB is a special
type of NB algorithm. It also assumes that all the
features have a Gaussian distribution [28].

3.2. Evaluation metrics

Several measures are utilized to evaluate how efficient
the proposed classifier performs. The statistics are de-
scribed as follows [29], (Appendix)

1) Accuracy

Accuracy illustrates the fraction of correct predictions
of the corresponding classifier.

Accuracy =
TP + TN

TP+ TN+ FP + FN
. (6)

2) Recall

Recall determines the number of positive cases that
the classifier correctly predicted. It also refers to the
sensitivity.

Recall =
TP

TP + FN
. (7)

3) Precision

Precision is also called positive predictive value. It in-
dicates that how many of positive findings are the real
positive.

Precision =
TP

TP + FP
. (8)

4) F1-score

F1-score incorporates recall and precision and mea-
sures the model accuracy.

F1 = 2 ∗ precision ∗ recall
precision + recall

. (9)

The corresponding dataset requires to be checked and
modified before using classification methods.

4. Data preprocessing

This stage is used to process the dataset including
analysing the type of features, null values, and dupli-
cated data before classification. For achieving better
results from the applied model in machine learning
project the format of the data has to be in a proper
manner. In order to prepare the dataset for classifica-
tion, dropping unimportant columns or modifying the
dataset is considered [28]. Pandas is the most widely-
used library for data analysis [30]. In this study, the
column of samples that is unnecessary for classification
was dropped and the total number of null values was
zero.

5. Pipeline method

The main key of constructing a pipeline is improved
readability. It can execute a series of operations with
only one call. Pipeline method performs multiple
transformers in a list (name, transform). The output of
each transformation is the input of the next. Eventu-
ally, pipeline would be fitted to the train data [31]. In
this work, the operations applied in pipeline are a di-
mension reduction based on PCA and six classification
methods respectively (Appendix).

5.1. PCA method

In this study, PCA is considered as the first transfor-
mation of pipeline technique. PCA is a well-known
unsupervised learning technique utilized for reducing
the dimensionality of a dataset by minimizing infor-
mation loss. This algorithm seeks for directions of
maximum variance regardless of labels [32]. The PCA
method implementation is applied in six steps [33] (Ap-
pendix).
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6. Classification results
In this study, trot dataset is classified using six classifi-
cation methods with different PCAs. There are 82 ob-
servations including 62 train samples and 20 test sam-
ples. Each sample is achieved by CPG model running
in Matlab/Simulink with five modified parameters or
features. Classification algorithms perform based on
the stability of quadruped robot locomotion. There-
fore, the labels of unstable and stable outputs are con-
sidered as 0 and 1 respectively. The train data has
thirty-one 0 and thirty-one 1. On the other hand, test
data has ten outputs of each one. Each sample has
five features: a, b, c, d and g1. A range of values for
each feature is defined that in these ranges the trot
stability of quadruped robot is guaranteed. Extremum
points (minimum and maximum) of corresponding fea-
tures are set in Table 2.

Tab. 2: The extremum values of features in trot dataset.

Features Minimum Maximum
g1 0.05 0.15
a 5.5 5.6
b 5.5 5.6
c 2.1 2.5
d -2.1 -2.5

6.1. Accuracy
As can be observed in bar graphs of Table 3, the accu-
racy value of KNN and SVC is maintained 95% with all
dimensions of PCA. The accuracy value of GaussianNB
with PCA = 1 is 100%. It falls to 85% with PCA=2
and this value remains constant with other PCAs. The
accuracy value of LR with all PCAs is 70% except with
PCA = 2 that shows a drop by 10%. The accuracy of
DT and RF with PCA=1 is 100% but with other PCAs
it can change significantly when DT and RF methods
run again. The range of changes with different num-
bers of PCA is between 60% to 100%. For instance,
Table 3, illustrates that by one run, the accuracies of
DT and RF classifiers with all numbers of PCA are
100% but reveals a drop by 10% for RF with PCA=3
and a fall by 20% for DT with PCA=4.

6.2. Recall
As shown in Table 3, there are three classification
methods that maintain their recall value with all num-
bers of PCA. First, KNN and SVC with the value of
100% and secondly, GaussianNB with 90%. Recall
value of LR is 80% with PCA = 1 but it decreases
to 60% by increasing the number of PCA. Recall score
of DT and RF with all numbers of PCA except PCA=1
can alter from 60% to 100% by restarting RF and DT
methods. Recall score of RF and DT with PCA= 1 is
100%. In the given report of recall scores, the values of
RF and DT are decreased to 60% with PCA=2. The

recall values with PCA=3 rise to 100% and 70% for
DT and RF respectively. PCA=4 decreases the value
of DT to 60% and increases the value of RF to 100%.
PCA=5 alters the values of DT and RF to 100% and
60% respectively.

6.3. Precision
According to the Table 3, the precision score of DT
and RF with all numbers of PCA is 100%. This value
is constant with PCA=1 but it can fluctuate (from 60%
to 100%) with other numbers of PCA by restarting DT
and RF methods. According to the given values, the
precision scores of DT and RF is 100% with all num-
bers of PCA. The precision value of KNN and SVC is
90.99% with all PCAs. Precision value of LR is 66.66%
in PCA=1 but it slightly decreases to 60% in PCA=2
and it rises to 75% in other PCAs. Precision value
of GaussianNB is 100% with PCA = 1 and PCA=2.
There is a drop in this score to 81.81% with the rest of
PCAs.

6.4. F1-score
As observed in Table 3, the f1-score of KNN and SVC
is 95.23% with all PCAs. F1-score of LR with PCA=1
is 72.72%. This value decreases to 60% in PCA=2 and
it minimally increases to 66.66% with PCA=3 and it is
maintained with other PCAs. F1-score of GaussianNB
is 100% with PCA=1. It drops to 83% in PCA=2 then
it slightly increases to 85.71% in PCA=3 and it main-
tains this value in higher PCAs. The f1-score of DT
and RF is 100% with PCA=1 but several fluctuations
can be seen by restarting the two classifiers with dif-
ferent PCAs.

According to the given figure, there is a fall to 75%
in the f1-score of DT with PCA=2 and it rises to
100% with PCA=5. The f1-score of RF fluctuates
from 100% to 75% with PCA=2 and increases to
95% with PCA=3, then it turns back to 100% with
PCA=4.

7. Discussion
The trot dataset is classified using six classification
methods in an effort to find which classifiers work
efficiently in prediction of movement stability of the
quadruped robot.

The parameters of different classifiers are set, including
n_estimators=5 for RFC, n_neighbors =3 for KNN,
kernel=”rbf” for SVC and solver=”liblinear” for LR.
PCA utilized as a feature reduction is considered from
1 to 5. Scikit-learn, an open-source library in Python,
is utilized to import classifiers, PCA and pipeline tech-
nique [34]. Confusion matrixes of six classifiers with
PCA=1, are set in table 3. Each classifier is made a
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Tab. 3: Results of classifiers for different PCAs.

PCA Classifier Accuracy score (%) Recall score (%) Precision score (%) F1-score (%)

1

DTC 100 100 100 100
RFC 100 100 100 100
KNN 95 100 90.9 95.23
SVC 95 100 90.9 95.23
LR 70 80 66.66 72.72

GaussianNB 100 90 100 100

2

DTC 100 60 100 75
RFC 100 60 100 75
KNN 95 100 90.9 95.23
SVC 95 100 90.9 95.23
LR 60 60 60 60

GaussianNB 85 90 100 83

3

DTC 100 100 100 75
RFC 90 70 100 95
KNN 95 100 90.9 95.23
SVC 95 100 90.9 95.23
LR 70 60 75 66.66

GaussianNB 85 90 81.81 85.71

4

DTC 80 60 100 75
RFC 100 100 100 100
KNN 95 100 90.9 95.23
SVC 95 100 90.9 95.23
LR 70 60 75 66.66

GaussianNB 85 90 81.81 85.71

5

DTC 100 100 100 100
RFC 100 60 100 100
KNN 95 100 90.9 95.23
SVC 95 100 90.9 95.23
LR 70 60 75 66.66

GaussianNB 85 90 81.81 85.71

total of 20 predictions. Confusion matrix presents the
number of correct and incorrect predictions and the
type of errors made by classifiers [35]. Confusion ma-
trixes determine that the number of errors made by
DT, RF and GaussianNB are zero. KNN and SVC
have one incorrect prediction. Confusion matrix of LR
shows that out of 20 predictions, 14 are true predic-
tions, and 6 are incorrect predictions.

8. Conclusion

In this study, a novel stability prediction method for
quadruped robot locomotion based on CPG has been
employed. The proposed technique utilizes ML ap-
proaches, employing classification methods and PCA,
to predict the stability condition of robot locomotion.
Six classification methods, including DT, RF, KNN,
SVC, LR, and GaussianNB, have been applied and
evaluated using four metrics: accuracy, recall, preci-
sion, and F1-score, in order to classify the stability
or instability of robot locomotion. To reduce the di-
mensionality of features, the PCA method has been
employed with various values. Unlike previous studies
that focused on analyzing the stability of legged robot
locomotion during specific gaits [6, 7, 8, 9], the primary
objective of this study is to predict stability prior to
initiating a gait with different parameters in robots.
Based on the results presented in Table 3, it can be

observed that the LR classifier exhibited the weakest
performance in predicting stability. On the other hand,
the DT and RF classifiers demonstrated the best per-
formance when PCA was set to 1. However, for other
PCA values, the KNN and SVC classifiers displayed
higher metric values, indicating their effectiveness in
predicting the stability of robot locomotion. In this
technique the stability of a quadruped robot is an-
ticipated before applying the relevant locomotion and
step switching with specific range of adjusting param-
eters. In addition, the best predictors are represented
to guarantee the stable and unstable move. It is pro-
posed in future research to implement this technique to
real legged robots especially to quadrupeds the supe-
rior robots because anticipating the stability is vital in
both the gait changing and adjusting the parameters
in practice because in different terrains, different types
of robots should be utilized to maintain the relevant
stability.
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Appendix A

ACC_DTC = []
ACC_RFC = []
ACC_KNN = []
ACC_SVC = []
ACC_LR = []
ACC_GaussianNB = []
PCA_dim = []
for i in range(1, 6):
. step1 = [(’dimension reduction’,
PCA(n_components= I)), (’classifier’,
DTC())]
. step2 = [(’dimension reduction’,
PCA(n_components= I)), (’classifier’,
RFC(n_estimators= 3))]
. step3 = [(’dimension reduction’,
PCA(n_components= i)), (’classifier’,
KNN(n_neighbors= 3))]
. step4 = [(’dimension reduction’,
PCA(n_components= i)), (’classifier’,
SVC(kernel= ’rbf’))]
. step5 = [(’dimension reduction’,
PCA(n_components= i)), (’classifier’,
LR(solver= ’liblinear’))]
. step6 = [(’dimension reduction’,
PCA(n_components= i)), (’classifier’,
GaussianNB())]
. clf1 = Pipeline(steps= step1)
. clf2 = Pipeline(steps= step2)
. clf3 = Pipeline(steps= step3)
. clf4 = Pipeline(steps= step4)
. clf5 = Pipeline(steps= step5)
. clf6 = Pipeline(steps= step6)
. clf1.fit(X_train, y_train)
. clf2.fit(X_train, y_train)
. clf3.fit(X_train, y_train)
. clf4.fit(X_train, y_train)
. clf5.fit(X_train, y_train)
. clf6.fit(X_train, y_train)
. y_pred1 = clf1.predict(X_test)
. y_pred2 = clf2.predict(X_test)
. y_pred3 = clf3.predict(X_test)
. y_pred4 = clf4.predict(X_test)
. y_pred5 = clf5.predict(X_test)
. y_pred6 = clf6.predict(X_test)
. ACC_DTC.append(accuracy_score(y_test,
y_pred1)*100)
. ACC_RFC.append(accuracy_score(y_test,
y_pred2)*100)
. ACC_KNN.append(accuracy_score(y_test,
y_pred3)*100)
. ACC_SVC.append(accuracy_score(y_test,
y_pred4)*100)

. ACC_LR.append(accuracy_score(y_test,
y_pred5)*100)
. ACC_GaussianNB.append(accuracy_score(
y_test, y_pred6)*100)
PCA_dim.append(i)
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